The generator matrix 1 0 1 1 1 X^3+X^2+X 1 X 1 X^3 1 1 X^2 1 1 1 X^2+X 1 1 X^3+X^2 1 X^3+X 1 1 1 1 1 1 1 1 1 1 1 X^2 1 1 1 X 1 1 X^2+X 0 1 1 1 1 1 1 1 1 1 1 0 1 X+1 X^2+X X^3+X^2+1 1 X^3+X^2 1 X^2+X+1 1 X^3+X 1 1 X^3 X+1 X^3+X^2+X 1 X^3+X^2+X+1 X^2 1 X 1 X+1 X^3+X^2+X+1 X^2+1 X^3+1 X^2+1 X^3+1 X^3+X+1 X^3+X^2+1 X^3+X^2+X+1 X^2+1 0 1 X^2+X+1 X^3+X^2+X X^3 1 X^2+X 1 1 1 X^3+X+1 1 X^3+1 X^3+X^2+X+1 X^2+X+1 X+1 X^2+X+1 X^2+X+1 X^2+X+1 X^3+X^2+1 0 0 X^2 0 X^3+X^2 X^2 0 X^2 X^3+X^2 X^3+X^2 0 X^2 X^3+X^2 X^2 X^3 X^3+X^2 0 X^3 X^2 0 X^3+X^2 0 X^3 X^3 0 X^3 X^3 0 X^2 X^2 X^3+X^2 X^3+X^2 0 X^3+X^2 X^3+X^2 X^2 X^2 X^3+X^2 X^3 X^2 X^3 0 X^3+X^2 X^3+X^2 X^2 X^3 0 X^3+X^2 X^3 0 X^3+X^2 X^3+X^2 0 0 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 X^3 0 X^3 X^3 X^3 0 X^3 X^3 0 0 X^3 0 0 X^3 X^3 0 0 0 X^3 X^3 X^3 0 0 X^3 0 X^3 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 X^3 0 0 0 0 0 X^3 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 X^3 0 0 0 X^3 0 X^3 X^3 X^3 0 X^3 0 X^3 X^3 0 X^3 0 X^3 0 X^3 0 0 X^3 0 0 X^3 X^3 0 X^3 0 0 0 0 X^3 X^3 X^3 X^3 generates a code of length 52 over Z2[X]/(X^4) who´s minimum homogenous weight is 48. Homogenous weight enumerator: w(x)=1x^0+463x^48+128x^49+544x^50+384x^51+1084x^52+384x^53+544x^54+128x^55+414x^56+12x^60+8x^64+2x^80 The gray image is a linear code over GF(2) with n=416, k=12 and d=192. This code was found by Heurico 1.16 in 1.52 seconds.